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Abstract. Shivers’s escape technique enables one to analyse the con-
trol flow of higher-order program fragments. It is widely used, but its
soundness has never been proven. In this paper, we present the first
soundness proof for the technique. Our proof is structured as a composi-
tion of Galois connections and thus rests on the foundations of abstract
interpretation.

1 Introduction

Control-flow analysis is traditionally a whole program analysis [Nielson et al.,
1999] meaning that it needs access to the entire program text. As flow-analysis
algorithms such as 0CFA require cubic time in the size of the program,4 this
limits their applicability to large programs.

Techniques exist, however, for analysing only a part of a program (e.g., an
independent module). One such technique is Shivers’s escape technique [Shivers,
1991, Sec. 3.8.2]:

“Our abstract analysis can handle this by defining two special tokens:
the external procedure xproc, and the external call xcall. The xproc rep-
resents unknown procedures that are passed into our program from the
outside world at run time. The xcall represents calls to procedures that
happen external to the program text.

. . .

We maintain a set ESCAPED of escaped procedures, which initially con-
tains xproc and the top-level lambda of the program. The rules for the
external call, the external procedure and escaped functions are simple:
1. Any procedure passed to the external procedure escapes.
2. Any escaped procedure can be called from the external call.
3. When a procedure is called from the external call, it may be applied

to any escaped procedure.”

4 For typed programs the complexity is usually not that bad [Heintze and McAllester,
1997].
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SExp 3 s ::= (t0 t1 . . . tn)
` (application)

TExp 3 t ::= x` (variable)

| (λx1 . . . xn. s)` (function)

Fig. 1. CPS language

Shivers does not prove his technique to be sound, however. In this paper, we
show how his technique can be derived using abstract interpretation by compos-
ing a number of well-known Galois connections.

We wish to stress that the escape technique presented in this paper is appli-
cable to any higher-order program analysis even though we present it in terms
of a higher-order language in continuation-passing style. It is thus as relevant to
a higher-order language like JavaScript as it is to a higher-order language like
Scheme. This proof technique grew out of an unpublished soundness proof for
the fast type-recovery of Adams et al. [2011].

2 Control-flow analysis

To focus on the topic at hand, namely modularity, we limit ourselves to a core
language consisting of the lambda calculus in continuation-passing style (CPS).
The grammar of the language is presented in Figure 1. Following Reynolds [1998]
the grammar distinguishes serious expressions (SExp) whose evaluation may di-
verge from trivial expressions (TExp) whose evaluation is guaranteed to termi-
nate. As is standard [Nielson et al., 1999], we label all sub-expressions with a
unique label ` to distinguish different occurrences of the same sub-expression.
For the remainder of this paper, we let labels on variables be implicit to ease the
syntactic overhead.

There are a number of advantages to the small-step CPS framework. First,
since all intermediate results are bound to a variable, an analysis can be char-
acterized in terms of computing an abstract environment or store. One would
otherwise need to compute an abstract cache that maps labels to abstract val-
ues [Nielson et al., 1999]. Second, since all calls are tail calls, the analysis does
not need special measures to propagate return flow. This is instead handled by
bindings to continuation variables. CPS therefore makes for a simple, uniform
analysis.

The control-flow analysis is formulated in terms of the curried transfer func-
tion T defined in Figure 2. For a given program P , the analysis is defined as
the least fixed point of T (P ). The analysis computes an abstract environment,
ρ : Var→ Val, which approximates the bindings of an actual program run. T re-
lies on a helper function E for analysing trivial expressions. We furthermore use
the shorthand notation [x 7→ E(t, ρ)] to mean [x1 7→ E(t1, ρ), . . . , xn 7→ E(tn, ρ)].
T considers all call sites (t0 t1 . . . tn)

` of the program P in each iteration. This
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T : ℘(SExp)→ (Var→ Val)→ (Var→ Val)

T (P )(ρ) =
⊔

(t0 t1...tn)`∈P

(λx1...xn. s)
`′∈E(t0,ρ)

ρ t [x 7→ E(t, ρ)]

where
E(x, ρ) = ρ(x)

E((λx1 . . . xn. s)
`, ρ) = {(λx1 . . . xn. s)`}

Fig. 2. CPS analysis

Var = XVar + IVar (variables)

Lam = XLam + ILam (functions)

Val = ℘(Lam) (values)

TExp = XTExp + ITExp (trivial exprs)

SExp = XSexp + ISexp (serious exprs)

Fig. 3. Syntactic and analysis domains

is easily accomplished by a traversal of P ’s abstract syntax tree. Here we simply
express P in terms of a set of call sites. For each possible receiver of a call, the
analysis binds the (analysis result of the) actual parameters to the formals. This
analysis agrees with the 0CFAs of Midtgaard and Jensen [2008] and Might [2010]
(sans reachability) and is therefore known to be sound.

We define the domains for the refined analysis in Figure 3. To pave the way
for a CFA over open programs, we split the domains into disjoint external and
internal sets and assume some basic consistencies among them. Variables bound
in an internal lambda are all internal variables. An analogous constraint applies
to external variables and external lambdas. Similarly, trivial sub-expressions of
an internal serious expression are all internal trivial expressions. However, the
trivial sub-expressions of an external serious expression may be either internal
or external.

For example, consider an analysis restricted to the boxed expression below.
The sub-expressions outside the box are external while those inside the box are
internal. Note that, inside the box, the variable occurrence of k is an internal
expression but refers to the external variable k.

(λ k. (k (λx. (k x)) ))

Finally, we assume that internal variables must be located inside an internal
lambda. Hence, for an external call site (t0 t1 . . . tn) none of the tj can be
internal variables. If tj is an internal lambda located immediately inside such an
external call site, we include it in a dedicated set Toplevel ⊂ ILam.
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3 Abstract interpretation

A Galois connection is a pair of functions (the adjoints) α : C → A and γ : A→
C which connect two partially ordered sets 〈C;v〉 and 〈A;≤〉 such that:

∀c ∈ C, a ∈ A : α(c) ≤ a ⇐⇒ c v γ(a)

Following abstract interpretation tradition [Cousot and Cousot, 1994], we type-

set Galois connections as 〈C;v〉 −−−→←−−−α
γ
〈A;≤〉.

Galois connections enjoy a number of properties. First, α and γ are necessar-
ily monotone. Second, the composition γ ◦ α is extensive (∀c ∈ C : c v γ ◦ α(c))
and the composition α ◦ γ is reductive (∀a ∈ A : α ◦ γ(a) ≤ a). For Galois
connections with a surjective α (or equivalently with an injective γ), the latter
composition yields the identity α ◦ γ = 1. These are called Galois surjections

(or Galois insertions) and are typeset as 〈C;v〉 −−−→−→←−−−−
α

γ
〈A;≤〉. When both α

and γ are surjective, the Galois connection is an isomorphism and is typeset as

〈C;v〉 −−−→−→←←−−−−
α

γ
〈A;≤〉.

Galois connections that connect complete lattices have even more properties.
For example, α is a complete join morphism (CJM) and thus preserves joins (i.e.,
α(tiSi) = ∨i α(Si)), and γ is a complete meet morphism and thus preserves
meets (i.e., γ(∧iSi) = ui γ(Si)). For easy reference, we summarize in Figure 4
the Galois connections relevant to this paper. Following Might [2010] we typeset
them as inference rules. For the purposes of this paper they all connect complete
lattices.

Galois connections interact nicely with fixed points. Given a Galois con-
nection between complete lattices and a monotone function F , the fixed-point
transfer theorem [Cousot and Cousot, 1979] provides an approximation of lfpF :

α(lfpF ) ≤ lfp(α ◦ F ◦ γ) ≤ lfpF ]

Here, F ] is a monotone function such that α ◦ F ◦ γ ≤̇F ]. Whereas any F ] sat-
isfying these requirements will do, the best abstraction satisfying F ] = α ◦ F ◦ γ
represents the best possible function over the chosen abstract domain [Cousot
and Cousot, 1992]. In the calculational approach to abstract interpretation,
Cousot [1999] advocates simple algebraic manipulation to find such a function
(if it exists) or a sound approximation thereof.

When F expresses an execution step in the formal semantics for a program,
lfpF describes the collecting semantics of the program: an ideal but generally
uncomputable exploration of program paths that is subject to over approxima-
tion.

4 Abstracting the domains

We derive Shivers’s escape technique in two steps. In this section, we define
Galois connections that abstract over the domains of our analysis. Then, in
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Transitive abstraction [Cousot and Cousot, 1994]

〈D0;v0〉 −−−→←−−−
α1

γ1 〈D1;v1〉 〈D1;v1〉 −−−→←−−−
α2

γ2 〈D2;v2〉

〈D0;v0〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 〈D2;v2〉
Trans

Elementwise abstraction [Cousot and Cousot, 1997]

@ : C → A

〈℘(C);⊆〉 −−−−−−−−−−−−−−−−→−→←−−−−−−−−−−−−−−−−−
α@=λP. {@(p) | p∈P}

γ@=λQ. {p | @(p)∈Q}
〈℘(A);⊆〉

Element

Isomorphic maps

〈(A+B)→ C; v̇〉 −−−−−−−−−−−−−−−−−−−−−→−→←←−−−−−−−−−−−−−−−−−−−−−−
α∼=λf. (f |A,f |B)

γ∼=λ(g,h). λx.

g(x) x∈A
h(x) x∈B

〈(A→ C)× (B → C); v̇× v̇〉

Iso

Collapsing abstraction

〈D → ℘(C); ⊆̇〉 −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−
α∪=λf.∪x∈Dom(f)f(x)

γ∪=λs. λx. s 〈℘(C);⊆〉
Collapse

Pointwise abstraction [Cousot and Cousot, 1994]

〈℘(C);⊆〉 −−−→←−−−
α1

γ1 〈A;v〉

〈D → ℘(C); ⊆̇〉 −−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−
α·=λf. λx. α1(f(x))

γ·=λf. λx. γ1(f(x)) 〈D → A; v̇〉
Pointwise

Product abstraction [Cousot and Cousot, 1994]

〈C1;v1〉 −−−→←−−−
α1

γ1 〈A1;≤1〉 〈C2;v2〉 −−−→←−−−
α2

γ2 〈A2;≤2〉

〈C1 × C2;v1 ×v2〉 −−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−
α×=λ(c1,c2). (α1(c1),α2(c2))

γ×=λ(a1,a2). (γ1(a1),γ2(a2))

〈A1 ×A2;≤1 ×≤2〉
Component

Subset abstraction [Cousot and Cousot, 1997]

S ⊂ C

〈℘(C);⊆〉 −−−−−−−−−−−−−→−→←−−−−−−−−−−−−−−
α⊂=λc. c∩S

γ⊂=λs. s∪(C\S)
〈℘(S);⊆〉

Subset

Fig. 4. Galois connection reference
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Section 5, we use these abstractions to derive the transfer function of an analysis
incorporating Shivers’s escape technique.

Figure 5 provides an overview of the Galois connections defined in this section
using the judgments defined in Figure 4.

4.1 Abstracting values

The operator @ : Lam → ILam + {xproc} maps lambdas to either internal
lambdas or the dedicated token xproc representing all external procedures:

@((λx1 . . . xn. s)
`) =

{
(λx1 . . . xn. s)

` (λx1 . . . xn. s)
` ∈ ILam

xproc (λx1 . . . xn. s)
` ∈ XLam

Using @, both Element judgments in Figure 5 build an elementwise abstrac-
tion on values. Since @ is surjective, the resulting Galois connection is a Galois
surjection:

℘(Lam) −−−−→−→←−−−−−
α@

γ@
℘(ILam + {xproc})

4.2 Abstracting the store

We abstract the store by, first, mapping the store to an isomorphic representation
containing two stores: one for external bindings and one for internal bindings.
Then, we abstract each component individually. By transitivity, the resulting
abstraction is a Galois connection.

The Iso judgment in Figure 5 uses the fact that Var = XVar + IVar and an
isomorphic representation of the store to build the following Galois connection:

(XVar + IVar)→ Val −−−−→−→←←−−−−−
α∼

γ∼
(XVar→ Val)× (IVar→ Val)

This isomorphism is well-known within set theory [Winskel, 2010], semantics,
and functional programming [Wand and Vaillancourt, 2004]. It allows us to ab-
stract the external bindings separately from the internal bindings.

Next, the Collapse judgment in Figure 5 abstracts the external bindings
with a collapsing abstraction α∪ that join all bindings and aliases them into a
single set of values:

XVar→ ℘(Lam) −−−−→←−−−−
α∪

γ∪
℘(Lam)

The Pointwise judgment in Figure 5 abstracts the internal bindings using
a standard pointwise lifting of the value abstraction:

IVar→ ℘(Lam) −−−→←−−−α·
γ·

IVar→ ℘(ILam + {xproc})

Finally, the Component judgment composes the two abstractions to form
a product abstraction of both external and internal bindings:

(XVar→ Val)×(IVar→ Val)−−−−→←−−−−
α×

γ×
℘(ILam+{xproc})×(IVar→ ℘(ILam+{xproc}))
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4.3 Abstracting programs

The analysis in Figure 2 computes a join for each call site of the input program
P . When only a part of the program is available, we represent the information
loss as an abstraction of the set of call sites. This is formulated as a subset
abstraction where P omits XSexp and keeps only ISexp:

℘(SExp) −−−−→−→←−−−−−
α⊂

γ⊂
℘(ISexp)

5 Abstracting the analysis

In this section, we use the Galois connections defined in Section 4 to abstract T
and derive a new transfer function, T ], that is sound with respect to T . By the
fixed-point transfer theorem [Cousot and Cousot, 1979], the fixed point of T ] is
a sound approximation of the fixed point of T .

5.1 Abstracting the helper function

We calculate a sound approximation of E, the helper function defined in Figure 2,
by composing it with the adjoints of the Galois connections.

α@ ◦ E(t, γ∼ ◦ γ×(ρe, ρi)) (def. of E)

=

{
α@((γ∼ ◦ γ×(ρe, ρi))(x)) t = x

α@({(λx1 . . . xn. s)`}) t = (λx1 . . . xn. s)
`

(def. of γ×)

=

{
α@((γ∼(γ∪ ◦ γ@(ρe), γ·(ρi)))(x)) t = x

α@({(λx1 . . . xn. s)`}) t = (λx1 . . . xn. s)
`

(def. of γ∼)

=


α@((γ∪ ◦ γ@(ρe))(x)) t = x ∈ XVar

α@((γ·(ρi))(x)) t = x ∈ IVar

α@({(λx1 . . . xn. s)`}) t = (λx1 . . . xn. s)
`

(def. of γ∪)

=


α@(γ@(ρe)) t = x ∈ XVar

α@((γ·(ρi))(x)) t = x ∈ IVar

α@({(λx1 . . . xn. s)`}) t = (λx1 . . . xn. s)
`

(def. of γ·)

=


α@(γ@(ρe)) t = x ∈ XVar

α@(γ@(ρi(x))) t = x ∈ IVar

α@({(λx1 . . . xn. s)`}) t = (λx1 . . . xn. s)
`

(Galois surjection)

=


ρe t = x ∈ XVar

ρi(x) t = x ∈ IVar

α@({(λx1 . . . xn. s)`}) t = (λx1 . . . xn. s)
`

(def. of α@)

=


ρe t = x ∈ XVar

ρi(x) t = x ∈ IVar

{xproc} t = (λx1 . . . xn. s)
` ∈ XLam

{(λx1 . . . xn. s)`} t = (λx1 . . . xn. s)
` ∈ ILam
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Hence by defining Ê as:

Ê(t, ρe, ρi) =


ρe t = x ∈ XVar

ρi(x) t = x ∈ IVar

{xproc} t = (λx1 . . . xn. s)
` ∈ XLam

{(λx1 . . . xn. s)`} t = (λx1 . . . xn. s)
` ∈ ILam

the following lemma holds by construction.

Lemma 1 (Ê is the best abstraction of E).

∀t, ρe, ρi : α@ ◦ E(t, γ∼ ◦ γ×(ρe, ρi)) = Ê(t, ρe, ρi)

While Ê is not an operator from a domain to itself, it nevertheless represents
the best abstraction of the operator E in terms of the abstract arguments ρe
and ρi.

By inspecting Ê applied to external expressions, we have the following bound.

Lemma 2 (Upper bound on Ê).

∀t ∈ XTExp, ρe, ρi : Ê(t, ρe, ρi) ⊆ ρe ∪ {xproc}

By a simple case analysis on t, we furthermore discover that Ê is monotone
in its environment arguments, ρe and ρi.

Lemma 3 (Ê is monotone in environment arguments).

∀t, ρe, ρ′e, ρi, ρ′i : (ρe, ρi) v (ρ′e, ρ
′
i) =⇒ Ê(t, ρe, ρi) ⊆ Ê(t, ρ′e, ρ

′
i)

5.2 Abstracting the transfer function

We now construct the abstract transfer function T ] by composing T with the
adjoints of the Galois connections. Given Pi, ρe, and ρi, we have:

α× ◦ α∼ ◦ (T (γ⊂(Pi))) ◦ γ∼ ◦ γ×(ρe, ρi)

= . . .

v (ρe ∪ {xproc} ∪ Toplevel , ρi)

t
⊔

{(t0 t1...tn)`}⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

(λx1...xn. s)
`∈ρe∪Toplevel

(ρe, ρi ∪̇ [x 7→ (ρe ∪ {xproc} ∪ Toplevel)])

t
⊔

{(t0 t1...tn)`}⊆Pi

(λx1...xn. s)
`′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)])
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The full calculation is lengthy and is therefore deferred to Appendix A. Nonethe-
less, it proceeds from simple algebraic rewritings relying only on standard Galois-
connection reasoning.

By defining the abstract transfer function T ] as:

T ] : ℘(ISexp)→ Ênv → Ênv

T ](Pi)(ρe, ρi) = (ρe ∪ {xproc} ∪ Toplevel , ρi)

t
⊔

{(t0 t1...tn)`}⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

(λx1...xn. s)
`∈ρe∪Toplevel

(ρe, ρi ∪̇ [x 7→ (ρe ∪ {xproc} ∪ Toplevel)])

t
⊔

{(t0 t1...tn)`}⊆Pi

(λx1...xn. s)
`′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)])

where Ênv = ℘(ILam + {xproc})× (IVar→ ℘(ILam + {xproc}))
the following lemma holds by construction.

Lemma 4 (T ] is a sound approximation of T ).

∀Pi, ρe, ρi : α× ◦ α∼ ◦ (T (γ⊂(Pi))) ◦ γ∼ ◦ γ×(ρe, ρi) v T ](Pi)(ρe, ρi)

By a sequence of upward judgments (v) from ρe to ρ′e, and from ρi to ρ′i and by
appeal to Lemma 3 we can furthermore verify that the derived transfer function
is monotone.

Lemma 5 (T ] is monotone).

∀Pi, ρe, ρ′e, ρi, ρ′i : (ρe, ρi) v (ρ′e, ρ
′
i) =⇒ T ](Pi)(ρe, ρi) v T ](Pi)(ρ′e, ρ′i)

Finally, the soundness of the derived analysis follows from the fixed-point transfer
theorem [Cousot and Cousot, 1979]:

Theorem 6 (Soundness of the analysis with Shivers’s escape tech-
nique).

∀Pi : α× ◦ α∼(lfpT (γ⊂(Pi))) v lfpT ](Pi)

5.3 Proof summary

The soundness of the analysis (Theorem 6) is proven using the fixed-point trans-
fer theorem. In order to use the fixed-point transfer theorem, we construct a Ga-
lois connection between the domains of T and T ] (Section 4), prove that T ] is a
sound approximation of T (Lemma 4) and prove that T ] is monotone (Lemma 5).

Since T includes a helper function, E, we also abstract E to Ê. Lemmas 1
and 2 simplify the calculations relating to Ê in the proof of Lemma 4. We use the
fact that Ê is monotone (Lemma 3) in the proof that T ] is monotone (Lemma 5).
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XProc
({xproc} ∪ Toplevel) ⊆ ρe

(t0 t1 . . . tn)
` ∈ Pi xproc ∈ Ê(t0, ρe, ρi)

Ê(tj , ρe, ρi) ⊆ ρe, j ∈ [1;n]
Escape

XCall
(λx1 . . . xn. s)

` ∈ (ρe ∪ Toplevel)

(ρe ∪ {xproc} ∪ Toplevel) ⊆ ρi(x)

(t0 t1 . . . tn)
` ∈ Pi (λx1 . . . xn. s)

`′ ∈ Ê(t0, ρe, ρi)

Ê(t, ρe, ρi) ⊆ ρi(x)
ICall

Fig. 6. CFA constraints

6 Extracting constraints

Given the transfer function T ], we are now in a position to take a step backwards
and extract constraints equivalent to T ] [Cousot and Cousot, 1995]. For any post-
fixed point (ρe, ρi) of T ], it holds that T ](Pi)(ρe, ρi) v (ρe, ρi). This is equivalent
to the constraint rules in Figure 6.

The XCall constraint is needlessly complex, however, as XProc guarantees
that both {xproc} and Toplevel are already subsets of ρe. Hence we can simplify
XCall to:

XCall’
(λx1 . . . xn. s)

` ∈ ρe
ρe ⊆ ρi(x)

The resulting constraints can be understood as follows.

– XProc: External procedures and top-level procedures may escape.
– Escape: If a call-site may target an external procedure, all of the actual

parameters escape.
– XCall’: If a procedure escapes, then its formal parameters may take any

escaped value.
– ICall: For internal call-sites and procedures, values flow from the actual

parameters to the formal parameters (as in the base analysis).

It is striking how close these constraints are to Shivers’s original description
as quoted in Section 1. In our characterization, the external environment ρe
plays the role of Shivers’s ESCAPED set. The two descriptions differ in that we
have not found the need to abstract external call-sites into a dedicated xcall
token. Doing so can be achieved by replacing the subset abstraction by another
elementwise abstraction over call sites. In his description, Shivers also omits the
detail that external (free) variables should be looked up in ESCAPED (i.e., ρe).

An implementation of the analysis can be realized as a direct implementation
of the transfer function T ] by performing Kleene iteration or by outputting con-
ditional constraints based on Figure 6 in the style of Palsberg and Schwartzbach
[1995] and subsequently solving them in O(n3) time.
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7 Related work

This work derives from the Galois-connection school of abstract interpreta-
tion [Cousot and Cousot, 1979]. Previous work by the present authors investigate
derivations of CFAs using Galois connections [Midtgaard and Jensen, 2008, 2012,
Might, 2010].

Shivers [1991, Sec. 3.8.2] conceived of the escaping-lambdas technique using
xproc to denote an external procedure, xcall to denote an external call, and
ESCAPED to denote the set of escaping procedures. However, he did not prove
the soundness of the technique. Serrano and Feeley [1996] used a similar concept
of escaping to the top of the lattice in their development of modular analyses
for both first-order and higher-order languages. Ashley and Dybvig [1998] later
used the escaping-to-top idea to formulate a sub-cubic CFA by jumping to top
if more than a constant number of procedures flow to a particular variable.
The implementation described in Ashley’s dissertation [Ashley, 1996, Sec. 6.1.1]
furthermore uses an escape set to accommodate free variables. However, Ashley’s
soundness proof assumes programs are closed. The present authors [Adams et al.,
2011] have recently combined the escaping-to-top idea with novel algorithms and
data structures to develop a fast, flow-sensitive type-recovery analysis. We did
not prove soundness of the escape technique in that work.

Flanagan and Felleisen [1999] developed a componential set-based analysis.
Their approach extends the set-based analysis by Heintze [1992] by avoiding re-
extracting constraints from unmodified program modules upon later re-analysis.
As a consequence, they achieve substantial speed-ups in their interactive setting
of a static debugger [Flanagan, 1997]. In a follow-up paper, Meunier et al. [2006]
develop a set-based analysis for program modules with contracts. The contracts
enable their analysis to statically detect and pin-point possible breaches (i.e.,
“blame” in the terminology of the contract literature).

Lee et al. [2002] construct 0CFA/m, a 0CFA variant extended to modules,
which analyses a program’s modules in order of dependence. The precision of
their 0CFA/m is better than a standard 0CFA as it avoids some of the spurious
flows of a standard 0CFA. In an accompanying technical report, they prove it
sound with respect to module-variant 0CFA, an instantiation of Nielson and
Nielson’s infinitary collecting semantics [Nielson and Nielson, 1997]. Whereas
the overall goal of our work agrees with that of Lee et al. [2002], it differs in that
our reconstruction of Shivers’s escape technique is a sound approximation of the
base analysis, 0CFA. As such, it is still monovariant, whereas 0CFA/m is not.

The present paper and the above work focus on untyped programs, but oth-
ers have investigated modular CFA for typed programs. Banerjee and Jensen
[2003] developed a modular and polyvariant CFA based on intersection types
for simply-typed programs with recursive function definitions. Like Shivers’s un-
typed escape technique, it handles sub-expressions with free variables. Banerjee
and Jensen’s analysis is furthermore compositional in that the analysis of an ex-
pression can be calculated by combining the analysis results of its sub-expressions
without re-analysing any of them. Reppy [2006] uses ML’s type abstraction to
improve the precision of a flow analysis by approximating the arguments of an
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abstract type with results computed earlier for the same abstract type. For a
broader survey of CFA, we refer the reader to Midtgaard [2012].

Cousot and Cousot [2002] present four strategies for modular program anal-
ysis to debunk the myth that abstract interpretation is inherently a whole-
program analysis technique. One of these is a worst-case separate analysis, which
analyses external objects based on no information (i.e, > in the lattice). Shiv-
ers’s escape technique goes beyond that approach, by keeping track of previously
escaped procedures in the ESCAPED set.

8 Conclusion

Both abstract interpretation and (untyped) control-flow analysis are often pre-
sented as inherently whole-program analyses. By characterizing Shivers’s CFA
escape technique in terms of Galois connections, we show how to extend these
to open programs. In doing so, we systematically derive an analysis which is
provably sound by construction. Our soundness proof is modular in that the ab-
straction is structured as a combination of Galois connections. It is furthermore
economical in that these Galois connections are well known from the literature.
The structure of our approach indicates that staged proofs are a viable way for-
ward for future higher-order analyses. After a base analysis is defined and proven
sound, the escape technique can be added and the combination proven sound.

Whereas CPS allows us to focus on the task at hand, one can imagine a
number of extensions. For one, our base CFA does not track the reachability of
the individual serious expressions. Instead, it conservatively assumes that all sub-
expressions are reachable. Adding an additional set to track reachability in the
style of Midtgaard and Jensen [2008] and performing a subset abstraction thereof
is straightforward. Another extension is to abstract external call-sites to xcall
as outlined in Section 6 to pave the way for a modular kCFA soundness proof. In
such a setting the modularized contours would consist of mixed strings of internal
call sites and xcall tokens. Characterizing the flat-lattice sub-0CFA [Ashley and
Dybvig, 1998] as an abstract interpretation and subsequently its open program
extension would be another interesting endeavor.

Acknowledgement: We thank Peter A. Jonsson for comments on an earlier ver-
sion of this paper.
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A Calculating the abstract transfer function

Let Pi, ρe, and ρi be given.

α× ◦ α∼ ◦ (T (γ⊂(Pi))) ◦ γ∼ ◦ γ×(ρe, ρi) (def. of T )

= α× ◦ α∼(
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))

γ∼ ◦ γ×(ρe, ρi) t [x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))])

(α× ◦ α∼ a CJM)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))

α× ◦ α∼(γ∼ ◦ γ×(ρe, ρi) t [x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))])

(α× ◦ α∼ a CJM)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))

α× ◦ α∼ ◦ γ∼ ◦ γ×(ρe, ρi) t α× ◦ α∼([x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))])

(Galois surjection)
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=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))

(ρe, ρi) t α× ◦ α∼([x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))]) (case analysis)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) t α× ◦ α∼([x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))])

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) t α× ◦ α∼([x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))]) (def. of α∼)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) t α×([x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))], λx. ∅)

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) t α×(λx. ∅, [x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))]) (def. of α×)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) t (α@ ◦ α∪([x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))]), α·(λx. ∅))

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) t (α@ ◦ α∪(λx. ∅), α·([x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))]))

(def. of α∪)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) t (α@(
⋃

j∈[1;n]

E(tj , γ∼ ◦ γ×(ρe, ρi))), α·(λx. ∅))

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) t (α@(∅), α·([x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))])) (α@ a CJM)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) t (
⋃

j∈[1;n]

α@ ◦ E(tj , γ∼ ◦ γ×(ρe, ρi)), α·(λx. ∅))

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) t (α@(∅), α·([x 7→ E(t, γ∼ ◦ γ×(ρe, ρi))])) (def. of α·)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) t (
⋃

j∈[1;n]

α@ ◦ E(tj , γ∼ ◦ γ×(ρe, ρi)), λx. α@(∅))

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) t (α@(∅), [x 7→ α@ ◦ E(t, γ∼ ◦ γ×(ρe, ρi))]) (Lemma 1)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) t (
⋃

j∈[1;n]

Ê(tj , ρe, ρi), λx. α@(∅))
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t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) t (α@(∅), [x 7→ Ê(t, ρe, ρi)]) (def. of α@)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe, ρi) t (
⋃

j∈[1;n]

Ê(tj , ρe, ρi), λx. ∅)

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi) t (∅, [x 7→ Ê(t, ρe, ρi)]) (def. of t)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩ILam

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)]) (def. of α@)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈α@◦E(t0,γ∼◦γ×(ρe,ρi))

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)]) (Lemma 1)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈E(t0,γ∼◦γ×(ρe,ρi))∩XLam

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)]) (α@ monotone)

v
⊔

(t0 t1...tn)`∈γ⊂(Pi)
xproc∈α@◦E(t0,γ∼◦γ×(ρe,ρi))

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)]) (Lemma 1)

=
⊔

(t0 t1...tn)`∈γ⊂(Pi)

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

(t0 t1...tn)`∈γ⊂(Pi)

(λx1...xn. s)
`′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)]) (Galois connection)

=
⊔

α⊂({(t0 t1...tn)`})⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)
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t
⊔

α⊂({(t0 t1...tn)`})⊆Pi

(λx1...xn. s)
`′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)]) (def. of α⊂)

=
⊔

{(t0 t1...tn)`}⊆XSexp

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

{(t0 t1...tn)`}⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

{(t0 t1...tn)`}⊆XSexp

(λx1...xn. s)
`′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)])

t
⊔

{(t0 t1...tn)`}⊆Pi

(λx1...xn. s)
`′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)]) (Lemma 2)

v
⊔

{(t0 t1...tn)`}⊆XSexp
xproc∈(ρe∪{xproc}∪Toplevel)

(ρe ∪ (ρe ∪ {xproc} ∪ Toplevel), ρi)

t
⊔

{(t0 t1...tn)`}⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

{(t0 t1...tn)`}⊆XSexp

(λx1...xn. s)
`′∈(ρe∪{xproc}∪Toplevel)

(ρe, ρi ∪̇ [x 7→ (ρe ∪ {xproc} ∪ Toplevel)])

t
⊔

{(t0 t1...tn)`}⊆Pi

(λx1...xn. s)
`′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)]) (simplify)

= (ρe ∪ {xproc} ∪ Toplevel , ρi)

t
⊔

{(t0 t1...tn)`}⊆Pi

xproc∈Ê(t0,ρe,ρi)

(ρe ∪
⋃

j∈[1;n]

Ê(tj , ρe, ρi), ρi)

t
⊔

(λx1...xn. s)
`∈ρe∪Toplevel

(ρe, ρi ∪̇ [x 7→ (ρe ∪ {xproc} ∪ Toplevel)])

t
⊔

{(t0 t1...tn)`}⊆Pi

(λx1...xn. s)
`′∈Ê(t0,ρe,ρi)

(ρe, ρi ∪̇ [x 7→ Ê(t, ρe, ρi)])


