A Simple State-Machine Framework
for Property-Based Testing in OCaml

Jan Midtgaard

The Maersk Mc-Kinney Moller Institute
University of Southern Denmark

1. Introduction

Since their inception [3, 1] state-machine frameworks have proven
their worth by finding defects in everything from the underlying
AUTOSAR components of Volvo cars to digital invoicing sys-
tems [2]. These case studies were carried out with Erlang’s com-
mercial QuickCheck state-machine framework from Quviq, but
such frameworks are now also available for Haskell, F#, Scala,
Elixir, Java, etc. We present a typed state-machine framework for
OCaml based on the QCheck library and illustrate a number of con-
cepts common to all such frameworks: state modeling, commands,
interpreting commands, preconditions, and agreement checking.

2. Property-based testing with QCheck

QCheck is a property-based testing library for OCaml. Consider the
following example:

open QCheck
let t =
Test.make (list small_nat)

(fun xs —-> List.of_seqg (List.to_seq xs) = xs);;

QCheck_runner.run_tests ~verbose:true [t]

Test .make expects a generator producing test input and a
property that each test input should satisfy. We use QCheck’s com-
binators to build a generator of integer lists and then test that each
list survives a round trip conversion through sequences.

Generators in QCheck are of type ’a arbitrary. This is de-
fined as a composite record type of “full” generators, which in-
cludes both an underlying “pure” generator of type ’a Gen.t, an
optional print function, and an optional shrinker:

type 'a arbitrary = {

gen : 'a Gen.t;
print : ("a —> string) option;
shrink "a Shrink.t option;

(x .. %)

}

The submodule Gen also offers a combinator library for building
composite pure generators.

3. Testing hashtables

As an example, consider the hashtable implementation from the
standard library. We recall a minimal selection of the hashtable
interface in Fig. 1. If we are to test this imperative interface us-
ing property-based testing, one option is to generate an arbitrary
sequence of (symbolic) hashtable operations and ensure that the
outcome of each operation is as expected. A common method to
phrase expectation in this context is by using a model: an idealized,
declarative specification of the imperative API.

val create

val add : ("a, ’"b) Hashtbl.t -> "a -> b -> unit
val remove : (’a, ’'b) Hashtbl.t -> ’a -> unit
val find : (’a, ’'b) Hashtbl.t -> 'a -> 'b

Figure 1: Selected operations from the Hashtbl interface

?random:bool -> int -> (’a, ’'b) Hashtbl.t

3.1 Commands and command generators

OCaml’s hashtables are polymorphic. To test them we need to
choose concrete key and value types. Somewhat arbitrarily, we
choose char as our key type and int as our value type. With this
type choice in mind, a symbolic hashtable operation can now be
represented as an algebraic datatype:

type cmd =
| Add of char = int
| Remove of char
| Find of char [@@deriving show]

Here we utilize a ppx-deriving preprocessor to automatically
derive a printer show_cmd cmd —> string.

Based on the data type definition we can now write a straight-
forward generator of commands. The generator chooses between
each of the three commands and is phrased in terms of a character
generator char_gen that generates arbitrary characters:

(* gen_cmd cmd Gen.t %)
let gen_cmd =

let char_gen = Gen.char in

Gen.oneof

[Gen.map2 (fun k v -> Add (k,v))

char_gen Gen.small_nat;
—-> Remove k) char_gen;
-> Find k) char_gen;]

(fun k
(fun k

Gen.map
Gen.map

When combined with the printer show_cmd we can now form a
full generator of arbitrary commands:

(arb_cmd cmd arbitrary x)
let arb_cmd = make ~print:show_cmd gen_cmd

3.2 Model and model interpretation

We can model a hashtable with character keys and integer values
by an association list of char * int pairs:

type state = (char * int) 1list

This type can naturally model the internal state of a hashtable, in
the form of a collection of char keys and associated int values.
Based on this model, it is straight-forward to write an interpreter:

(» next_state cmd —> state -> state x)
let next_state ¢ s = match c with

| Add (k,v) -> (k,Vv)::s

| Remove k —-> List.remove_assoc k s

| Find _ -> s

Interpreting an Add command adds the key-value pair to the as-
sociation list, whereas Remove deletes the first occurrence of key
k using List .remove_assoc. This faithfully models how adding
an entry with an existing key shadows any previous entries. In the
Find case the state is returned unmodified since the operation has
no effect on a hashtable’s internal state.

3.3 Interpreting commands and verifying the output

We still need to interpret the symbolic commands over the actual
system under test (sut) and to verify that any output returned is as
expected. We perform these two tasks with a function run_cmd:

type sut = (char, int) Hashtbl.t

(* run_cmd cmd —-> state —-> sut —-> bool =*)
let run_cmd ¢ s h = match c with
| Add (k,v) —> Hashtbl.add h k v; true
| Remove k —-> Hashtbl.remove h k; true
| Find k -> List.assoc_opt k s
= (try Some (Hashtbl.find h k)
with Not_found -> None)

Since Add and Remove have return type unit, there is no output to
verify and we therefore simply return true. In the Find case we
verify that the output agrees with the corresponding operation over
the model’s association list. We do so by relying on assoc_opt
from the List module.

4. From commands to command lists

So far, we have combined three types: (1) a type of commands, (2)
a system under test (hashtables), and (3) a model of the system’s
state (association lists) with operations for interpreting a command
over the model and interpreting a command over the system under
test and ensuring agreement. We now consider a common interface
for phrasing such state-machine tests:

module type StmSpec =
sig

type cmd

type state

type sut

val arb_cmd state -> cmd arbitrary
val init_state : state
val next_state : cmd -> state -> state
val init_sut unit -> sut
val cleanup sut —-> unit
val run_cmd : cmd -> state —-> sut -> bool
val precond : cmd -> state —-> bool
end

The operation arb_cmd returns a full command generator. It ac-
cepts a state parameter to enable state-dependent cmd generation.
It is furthermore phrased as a full generator, to allow an optional
cmd printer and shrinker to be provided. For example, using this
setup we can revise char_gen to increase the chance of generating
an existing key to add, remove, or £ind. We do so by choosing an
existing key from s with probability %:

(» gen_cmd state -> cmd Gen.t x)
let gen_cmd s =
let char_gen =
if s = []
then Gen.char
else
let keys = List.map fst s in
Gen.oneof [Gen.oneofl keys;
Gen.char] in
Gen.oneof
(* ... (unchanged) =)

(» arb_cmd state -> cmd arbitrary =)
let arb_cmd s =
QCheck.make ~print:show_cmd (gen_cmd s)

The init_state and next_state represent the model’s ini-
tial state and an operation for interpreting a command over the
model, respectively. Finally there are three operations concerned
with the system under test: init_sut for initializing it, run_cmd
for interpreting a command, and cleanup for resetting the system
under test. We include the full example in Appendix A. As an ad-
ditional operation, the signature requires precond for expressing
preconditions for a command. This is useful, e.g., to prevent the

start »OD add, remove, find

Figure 2: State machine underlying the Hashtbl command generator

command list shrinker from breaking invariants when minimizing
counterexamples.

The framework is phrased as a functor 0CSTM.Make. When
passed a module satisfying the StmSpec interface it returns a mod-
ule with the following signature:

sig
val arb_cmds state -> cmd list arbitrary
val interp_agree
val agree_test
(+ some entries omitted =x)
end

The arb_cmds represents a state-dependent command list gen-
erator and interp_agree represents an agreement checker for
command lists. The operation agree_test lets us easily build an
agreement test. Compared to writing a model out explicitly, the
framework saves us from repeatedly writing a recursive agreement
checker and a state-dependent command list generator.

The example comprises a state machine with only a single state
as illustrated in Fig. 2. Additional states and precond come into
play when modeling a protocol, e.g., if Queue . pop should only be
invoked on a non-empty queue.

5. Other examples

To ensure that the design holds water, we have written tests of 4
modules from Stdlib (including a larger Hashtbl test with 9
commands) along with examples from the property-based testing
literature. Collectively these span both tests of OCaml and C code
called via the Ctypes library. The examples are summarized below
and are all available from https://github.com/jmid/gcstm

name type #cmds LOC ratio
counter int ref 4 41 103
water jug puzzle 6 43 7.2
Queue Stdlib 5 66 13.2
Stack Stdlib 7 79 113
Buffer Stdlib 8 86 10.8
Hashtbl (minimal) Stdlib 3 48 16.0
Hashtbl Stdlib 9 97 10.8
put-get C 2 42 21.0
circular buffer C 4 92 230
stdio C 5 152 304

Generally there is some overhead in settings things up, e.g., to
define types and apply the functor as illustrated by comparing the
two Hashtbl counts. Disregarding the minimal one, OCaml code
requires 10-13 lines of test code per command. For testing C code
the ratio is clearly higher.

6. Conclusion

We have presented the design of gcstm, a typed state-machine
framework for OCaml based on the QCheck QuickCheck library.
The framework is available via OPAM: opam install gcstm

References

[1] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing telecoms
software with Quviq QuickCheck. In Proceedings of the 5th ACM
SIGPLAN workshop on Erlang, 2006.

[2] J. Hughes. Experiences with QuickCheck: Testing the hard stuff and
staying sane. In A List of Successes That Can Change the World, volume
9600 of LNCS, pages 169-186, 2016.

[3] P. W. M. Koopman and R. Plasmeijer. Testing reactive systems with
GAST. In Revised Selected Papers from TFP 2003, volume 4, pages
111-129, 2005.

state -> sut -> cmd list -> bool
?count:int -> name:string -> Test.t

A. A complete example
open QCheck

module HConf =

struct
type state = (char % int) 1list
type sut = (char, int) Hashtbl.t
type cmd =

| Add of char = int
| Remove of char
| Find of char [@@deriving show]

(* gen_cmd : state -> cmd Gen.t x)
let gen_cmd s =
let char_gen =
if s = []
then Gen.char
else
let keys = List.map fst s in
Gen.oneof [Gen.oneofl keys;
Gen.char] in
Gen.oneof

[Gen.map2 (fun k v -> Add (k,v)) char_gen Gen.small_nat;
Gen.map (fun k —-> Remove k) char_gen;
Gen.map (fun k -> Find k) char_gen;]
let arb_cmd s = QCheck.make ~print:show_cmd (gen_cmd s)

let init_state = []
let next_state ¢ s = match c with
Add (k,v) -> (k,v)::s

|
| Remove k —-> List.remove_assoc k s
| Find _ -> s
let init_sut () = Hashtbl.create ~random:false 42

let cleanup _ = ()
let run_cmd ¢ s h = match ¢ with

| Add (k,v) -> begin Hashtbl.add h k v; true end
| Remove k -> begin Hashtbl.remove h k; true end
|

Find k —>
List.assoc_opt k s = (try Some (Hashtbl.find h k)
with Not_found -> None)
let precond _ _ = true

end
module HT = QCSTM.Make (HConf)
I
QCheck_runner.run_tests ~verbose:true
[HT.agree_test ~count:500 ~name:"Hashtbl-model_agreement"]

